Several of the commenters on my previous post on motivating the study of logic in my intro class have suggested that one important aspect of logic is the precision it affords, and hence the usefulness of logic in avoiding ambiguities. So I tried to find some nice examples of where ambiguity in natural language—and the resulting different interpretations—can have important consequences. (I’m still looking for examples, especially form philosophy!) I happened upon a paper entitled “Syntactic Ambiguity” by Paul Conway, which gives some very nice actual examples from law. I picked one of the examples that can be dealt with in propositional logic (no quantifiers used yet).
a is a cube in front of b, or a tetrahedron in front of b, or to the left of b.
That’s ambiguous between*
(Cube(a) ∧ FrontOf(a, b)) ∨
(Tet(a) ∧ (FrontOf(a, b) ∨ LeftOf(a, b))
and
(Cube(a) ∧ (FrontOf(a, b) ∨ LeftOf(a, b))) ∨
(Tet(a) ∧ (FrontOf(a, b) ∨ LeftOf(a, b))
Here’s the real-life example from the above paper:
In R v. Casement, Sir Roger Casement was charged with high treason contrary to Treason Act, 1351 (Eng.). It was alleged that during World War I he incited British subjects who were prisoners of war in Germany to renounce their allegiance to the King. The statute declared that treason was committed ‘… if a man do levy war against our Lord the King in his realm, or be adherent to the King’s enemies in his realm, giving to them aid and comfort in the realm, or elsewhere, and thereof be properly attainted of open deed by the people of their condition: …’. The charge alleged adhering to the King’s enemies elsewhere than in the King’s realm, namely in the empire of Germany. The defence unsuccessfully submitted that the Crown had failed to prove an offence in law. ‘The contention is that those words “or elsewhere” govern only the words “aid and comfort in the realm” and have no application to the words “be adherent to the King’s enemies in his realm.’
I believe that part of the reason that the trial and conviction caused such an outcry, aside from the fact that Casement was famous as a humanitarian exposing human rights abuses in the Congo and Peru, was that it wasn’t clear if the original document of the Treason Act contained the last comma or not.
* A third reading would be
(Cube(a) ∧ FrontOf(a, b)) ∨ (Tet(a) ∧ FrontOf(a, b)) ∨ LeftOf(a, b)
but that isn’t a possible reading of the clause in the Treason Act.
Leave a Reply